Sequence context effect for hMSH2-hMSH6 mismatch-dependent activation.

نویسندگان

  • Anthony Mazurek
  • Christopher N Johnson
  • Markus W Germann
  • Richard Fishel
چکیده

Numerous DNA mismatches and lesions activate MutS homologue (MSH) ATPase activity that is essential for mismatch repair (MMR). We have found that a mismatch embedded in a nearest-neighbor sequence context containing symmetric 3'-purines (2 x 3'-purines) enhanced, whereas symmetric 3'-pyrimidines (2 x 3'-pyrimidines) reduced, hMSH2-hMSH6 ATPase activation. The 3'-purine/pyrimidine effect was most evident for G-containing mispairs. A similar trend pervaded mismatch binding (K(D)) and the melting of unbound oligonucleotides (T(m); DeltaG). However, these latter measures did not accurately predict the hierarchy of MSH ATPase activation. NMR studies of imino proton lifetime, solvent accessibility, and NOE connectivity suggest that sequence contexts that provoke improved MSH-activation displayed enhanced localized DNA flexibility: a dynamic DNA signature that may account for the wide range of lesions that activate MSH functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bcl2 impedes DNA mismatch repair by directly regulating the hMSH2-hMSH6 heterodimeric complex.

Bcl2 has been reported to suppress DNA mismatch repair (MMR) with promotion of mutagenesis, but the mechanism(s) is not fully understood. MutSalpha is the hMSH2-hMSH6 heterodimer that primarily functions to correct mutations that escape the proofreading activity of DNA polymerase. Here we have discovered that Bcl2 potently suppresses MMR in association with decreased MutSalpha activity and incr...

متن کامل

Mismatch repair protein hMSH2-hMSH6 recognizes mismatches and forms sliding clamps within a D-loop recombination intermediate.

High fidelity homologous DNA recombination depends on mismatch repair (MMR), which antagonizes recombination between divergent sequences by rejecting heteroduplex DNA containing excessive nucleotide mismatches. The hMSH2-hMSH6 heterodimer is the first responder in postreplicative MMR and also plays a prominent role in heteroduplex rejection. Whether a similar molecular mechanism underlies its f...

متن کامل

Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSalpha is abolished by a single mutation in the hMSH6 subunit.

The most abundant mismatch binding factor in human cells, hMutSalpha, is a heterodimer of hMSH2 and hMSH6, two homologues of the bacterial MutS protein. The C-terminal portions of all MutS homologues contain an ATP binding motif and are highly conserved throughout evolution. Although the N termini are generally divergent, they too contain short conserved sequence elements. A phenylalanine --> a...

متن کامل

Identification of mismatch repair protein complexes in HeLa nuclear extracts and their interaction with heteroduplex DNA.

Deficiencies in DNA mismatch repair (MMR) have been found in hereditary colon cancers (hereditary non-polyposis colon cancer, HNPCC) as well as in sporadic cancers, illustrating the importance of MMR in maintaining genomic integrity. We have examined the interactions of specific mismatch repair proteins in human nuclear extracts. Western blot and co-immunoprecipitation studies indicate two comp...

متن کامل

hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha.

In extracts of human cells, base-base mismatches and small insertion/deletion loops are bound primarily by hMutSalpha, a heterodimer of hMSH2 and hMSH6 (also known as GTBP or p160). Recombinant hMutSalpha bound a G/T mismatch-containing oligonucleotide with an apparent dissociation constant Kd = 2.6 nM, while its affinity for a homoduplex substrate was >20-fold lower. In the presence of ATP, hM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 11  شماره 

صفحات  -

تاریخ انتشار 2009